

GLKN Water Quality Monitoring – Inland Lakes Sampling Design

- Monitored annually, 3x/yr
- Index Lakes (N=33)
- Open water season, pref. when stratified

NETN Water Quality Monitoring – Lake and Pond Sampling Design

- Based on Acadia NP program
- Monitored monthly, May- October
- > Annual & alternating monitoring at ACAD
- > Annual monitoring at other NETN parks
- All accessible lakes > 1 acre (total of 23 in NETN) will be monitored (census)

9 Parks in GLKN 6 with Inland Lakes

- Apostle Islands NL
- Indiana Dunes NL
- Isle Royale NP
- Pictured Rocks NL
- Sleeping Bear Dunes
- Voyageurs NP

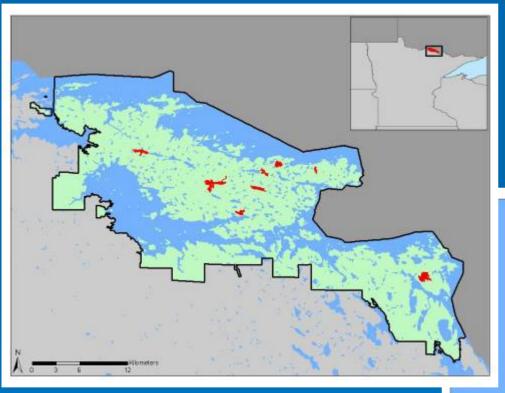
Waterbodies in GLKN Parks

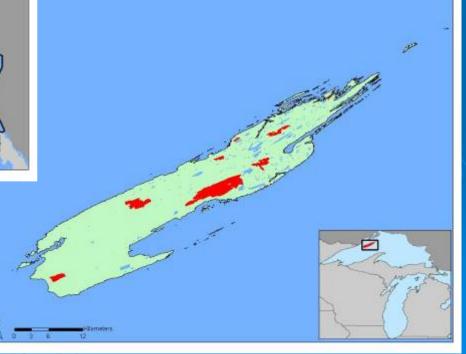
Surface Area

	<1 ha	1-10 ha	10-100 ha	100- 1000 ha	>1000 ha
APIS	66	9	1		
INDU	49	9			
ISRO	189	60	22	4	1
PIRO	98	17	5	2	
SLBE	9	7	12	3	1
VOYA	237	268	27	4	4

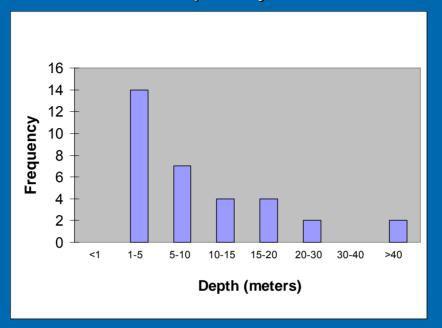
Source - National Hydrography Database; Including beaver ponds, wetlands with open water

Selecting Index Lakes

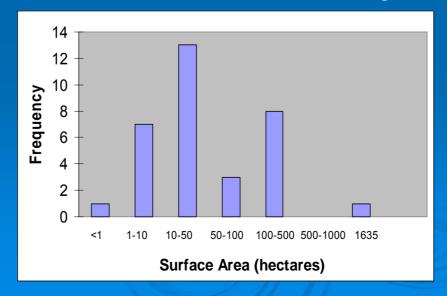

Span gradients of:

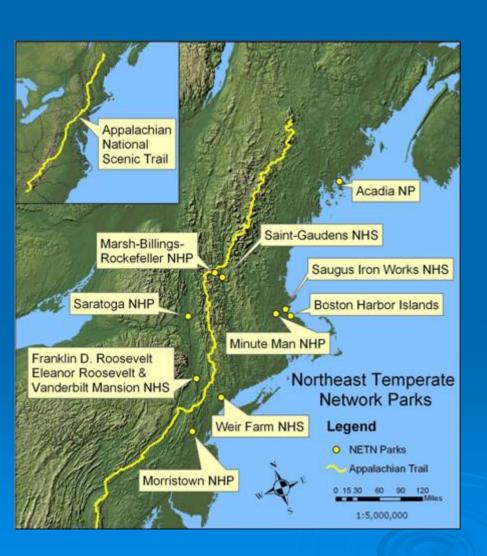

- Lake type (ordination of past WQ data)
- Basin morphometry
- Geographical distribution w/in park
- Visitor use
- Watershed size

Index Lakes Selected


- ➤ APIS 4 lagoons (3 island, 1 mainland)
- ➤ INDU 1
- > ISRO 9 (main island)
- \triangleright PIRO 5
- SLBE 6 (1 island, 5 mainland)
- > VOYA 8

Index Lakes Selected for Voyageurs and Isle Royale National Parks, Showing Spatial Distribution




Index Lakes – Frequency Distribution of Zmax

Most index lakes less than 50 ha; one large lake (ISRO)

10 Parks in NETN 7 with Lakes or Ponds

Monitoring Sites:

- ACAD: 13 lakes (>15 acres),
 7 ponds (<u>></u>1- 15 acres)
- > MABI: 1 pond
- WEFA: 1 pond
- SAGA: 1 pond

Parameters Measured

GLKN

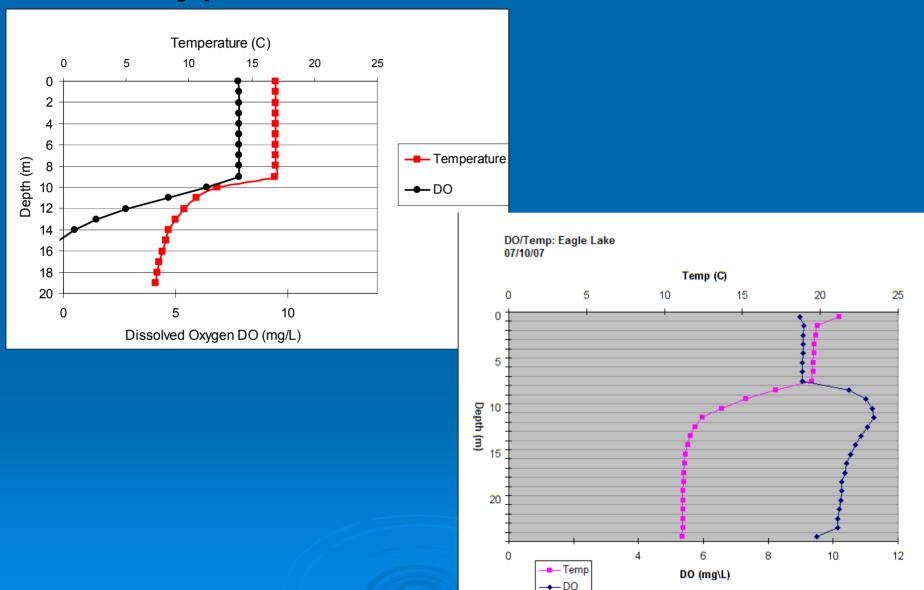
NETN

- Core suite
 - Temp, DO, pH, EC25,
 - Clarity,
 - Water level
- Advanced suite
 - CI, SO₄, Ca, K, Mg, Na, SiO₂
 - Alkalinity
 - > DOC, TP, chl-a
 - \triangleright TN, NO₂+NO₃-N, NH₄-N,

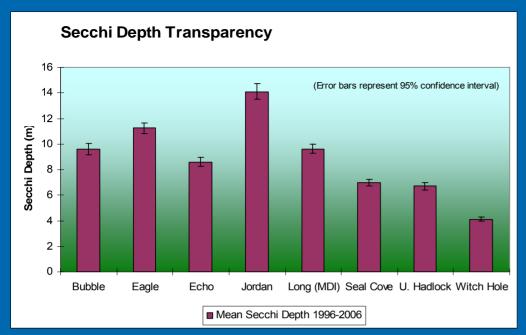
Core suite

- > Temp, DO, pH, spCond
- Secchi transparency (or Licor)
- Water level
- Advanced suite
 - > ANC, Apparent color
 - > TP, TP_{diss}, PO₄ chl-a
 - ightharpoonup TN, TN_{diss}, NO₂+NO₃-N, NO₂-N, NH₃-N,
- Spring/Fall Acidification
 - pH, eqpH, spCond, ANC, DOC, True color, Al, Ca, K, Mg, Na, NH₄, Cl, NO₃, SO₄, TN.

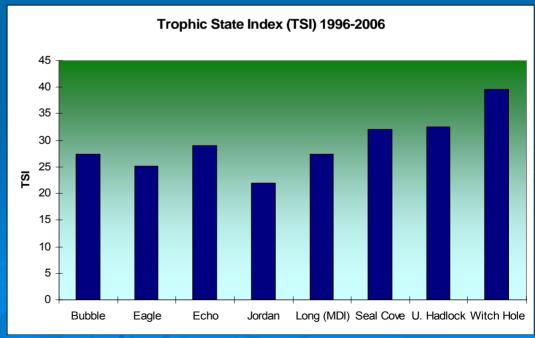
Core Suite Profiles



NETN



Typical Late-Season Profile



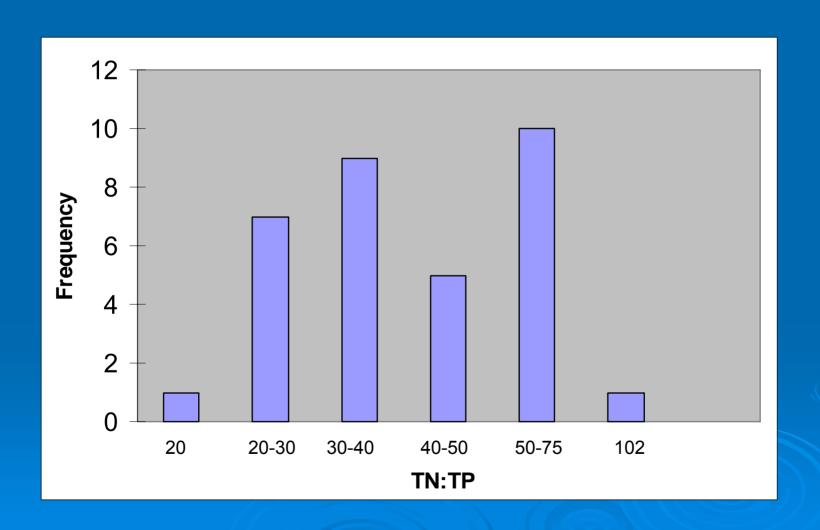
GLKN – Range of Seasonal Means Across Parks

	Max	Min
Secchi (m)	7.8 ISRO	1.4 ISRO
Conductivity (µS/cm)	320 SLBE	7 PIRO
pH (SU)	8.72 ISRO	5.35 PIRO

NETN – Secchi Transparency at ACAD

GLKN: 0-2 m integrated sample

NETN: 0-10 m integrated sample



GLKN – Range of Seasonal Means Across Parks

	Max	Min
Alkalinity	157	≤ 4
(mg/L)	PIRO	PIRO, APIS, VOYA
Total P	34	4
(ppb)	ISRO	VOYA
Total N	818	210
(ppb)	SLBE	VOYA

GLKN 2007 TN:TP Results all lakes P-limited

GLKN Range of Travel Time

from park hdqtrs

```
    ~20 min (one way)
    SLBE – Tucker Lake
    15 min drive to lake
    5 min paddle to site
```

~4 hr (one way)

ISRO - Desor Lake

1.5 hr boat Lake Superior30 min paddle to shore1.5 hr portage to L. Desor30 min paddle to site

Back-country Sampling

GLKN: Measuring Water Level

Measuring Water Level

- > Install reference markers
 - Drill into bedrock
 - Pound rod 1.5m into sand
 - Nail in tree as back-up 1st year
- Using hand level and stadia rod measure water level relative to marker

Example Water Level Notes

Agnes Lake Reference Marker UTM: 15T 5368392N 513742E

6-10-06 water level = - 1.20m

Reference marker on NW side of lake, NE of campsite - straight line distance 34.5 m from fire ring. Below large rock wall ~1.5 m away from water's edge beneath 10"dbh jack pine. Hike along shoreline to large jack pine. Reference marker is 400° from fire ring.

Pictures from campsite toward marker and marker toward campsite.

8-2-06 water level = - 1.305 m

NETN: Measuring Water Level

Oops!

Sonde QA/QC

- Calibrate daily, pre-mobilization
- Maintain a calibration log
- Check calibration pre-mobilization, several times/sampling round
- > Develop calibration acceptance criteria
- > Check bias with reference solutions
- AMS: 7 successive measurements, calculate S.D.

Calibration Acceptance Criteria

- Temperature ± 1.0°C
- Specific Conductivity ± 5%
- > pH ± 0.05 standard unit
- ➤ Dissolved Oxygen ± 0.2 mg/L or 10% saturation
- ➤ Depth 0.1m

Field Measurement QA/QC

Stabilization Criteria

- > Temperature 0.2°C
- > Specific Conductivity ≤100 µS/cm: <5 µS/cm >100 µS/cm: ± 10%
- > pH ± 0.2 standard unit
- > Dissolved Oxygen conc. ± 0.5 mg/L
- > Depth 0.1m

QA/QC Duplicates and Blanks

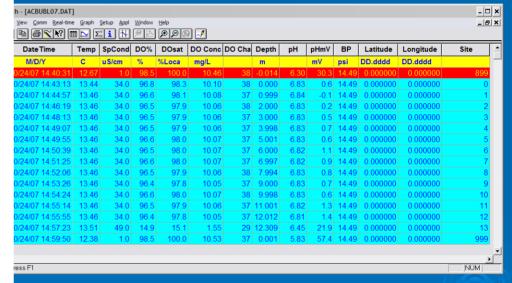
- Field duplicates ≥ 10%
 - acceptance criteria 10% RPD
- Lab duplicates ~ 10%
 - acceptance criteria
 - chl-a, nutrients = 30%
 - other parameters = 15%
- > Blanks
 - beginning and middle of season
 - each piece of sampling equipment

QA/QC — Checklists Multiprobe

- Resolution
- Bias
- Stabilization criteria
- AMS

QA/QC – Checklists Contract Lab

- Lab (examples)
 - ____ Received QAPP
 - MDL & ML defined
 - Reporting data flags used
- Lab data validation (examples)
 - ____ Holding time limits met
 - Useable MDL and ML achieved
 - QC samples within expected range


QA/QC – Checklists Field Measurements

Sampling Unit	
Reviewed by	Date
Multiprobe was calibrate	d correctly
Multiprobe post-calibrati	on checks were successful
Field duplicates were wi	thin range
All field forms have been	n received
No obvious trends in da	ta from any sensor

QA/QC – Checklists on Field Forms whenever possible

ACADIA NATIONAL PARK Resource Management	Imform.doc (ev. 606)		
Lake Survey Form			
Lake: Station; YSI/DB lake code: MIDA S:	SUN: Bright Cloudy Overcast Cloud cover: %		
Date: Time: Surveyor:	Wind Vel: Wind Dir: Air Temp:°C		
Transparency Secchi Depth: meters QC Duplicate Reading: meters Did disk hit bottom? ("B" = yea) LICOR Profile completed?	Surface Water Temp:°C Measured depth where sampled: meters feet Lake Level: meters feet		
YSI Multi-parameter Meter DO % sat drifted high to low: Calibrate DO in field: Pressure at DO calibration: DO charge before calibration (25 to 75): DO % local in sat enviro (100 ± 2%): DO gain local (0.7 to 1.14) after calib: Calibrate depth: PH Calibration: 1-point 2-point PH Calib to: PH 7 PH 7 PH 4 PH 7 PH 7 PH 4 PH 7 PH 7 PH 4 PH 7 PH 7 PH 4 PH 7 PH 9 PH	Water Sample Information Sample location: Deep hole Other Sample type: Core Grab Sample Depth: Sample time: Sample Set: NETN/Nutrients Acidification		
Notes:	<u>-</u>		
Data Entry: Secchi YSI/DO/Temp	Chemistry Proofed? DEP Database		

Sample ID

Calibration checks saved with data

QA/QC – Checklists Field Measurements

Reviewed by	Date
Multiprobe was calibrated correctly	
Multiprobe post-calibration checks	were successful
Field duplicates were within range	
All field forms have been received	
No obvious trends in data from any	sensor

Minimum Detectable Difference

Trophic status parameters (TP, Chl-a, Secchi)

- Chl-a most variable
- Secchi least variable

Baseline = 10 yrs of Secchi data (1x/mo, summer) Subsequent 20% change/yr, ά=0.05, power = 80%

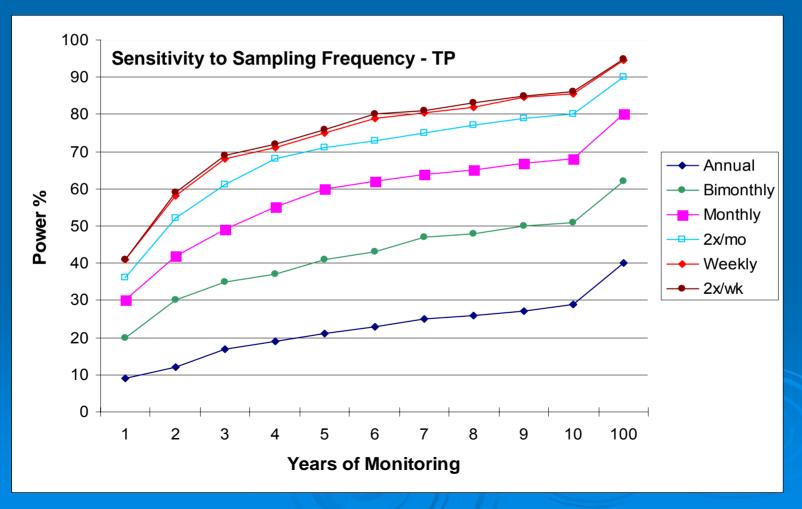
>10 yrs required for TP and Chl-a

(Vermont Lay Monitoring Program, Schmeltzer et al. 1989)

MDD (continued)

Baseline = 10 yrs Secchi data (1x/mo, summer)

(Minn. Poll. Control Agency 2005; Heiskary & Lindbloom 1993)


MDD (continued) Past Data from GLKN Parks

yrs to detect 20% change in DO; $\alpha = 0.1$, 1- $\beta = .80$ Sampling 3x/yr, open water season (Host, unpubl. data)

Lake (Park)	Depth	Mean	CV	# yrs
	Stratum	(% DO)		
Florence	1-3 m	96.8	0.051	4
(SLBE)				
Manitou	1-3 m	95.3	0.072	5
(SLBE)				
Chapel	6-7 m	7.86	0.455	19
(PIRO)				

Sampling Frequency

Monthly sampling – open water season Biggest Bang for the Buck

Minimum Detectable Differences for Acadia lakes (as % change)

Metric	Basis	Mean	SD/Mean	MDD 8	MDD 17
				-/+	-/+
Stage height	11 lakes – 2006 ¹	0.90	0.42	53% /%	36% / 56%
Secchi depth	10 lakes – 2007 ²	7.79	0.15	22% / 28%	15% / 17%
Specific cond	$11 \text{ lakes} - 2007^3$	121	0.07	11% / 12%	7% / 8%
Min pH	11 lakes – 2006 ⁴	5.73	0.24	33% / 49%	22% / 28%
Max pH	11 lakes – 2006	6.42	0.26	35% / 54%	24% / 31%
Temp – E	10 lakes – 2007 ⁵	19.4	0.15	22% / 28%	15% / 17%
Temp – H	10 lakes – 2007	11.0	0.08	12% / 14%	8% / 9%
Temp – N	3 lakes – 2007	12.6	0.34	44% / 78%	30% / 43%
DO – E	10 lakes - 2007	9.01	0.06	10% / 11%	6% / 7%
DO – H	10 lakes - 2007	5.84	0.70	81% /%	55% /%
DO – N	3 lakes – 2007	10.1	0.13	19% / 24%	13% / 15%
Chl a	8 pairs – 2007 ⁶	2.14	0.34	44% / 78%	30% / 43%
ANC	8 pairs – 2007	60.0	0.10	15% / 18%	10% / 11%
Apparent color	8 pairs – 2007	17.9	0.19	27% / 36%	18% / 22%
Tot P	8 pairs – 2007	4.54	0.25	34% / 51%	23% / 30%
Tot Diss P	7 pairs – 2007	2.05	0.30	40% / 66%	27% / 37%
Ortho-P	Insufficient data				
Tot N	6 pairs – 2007	0.16	0.10	15% / 18%	10% / 11%
Tot Diss N	3 pairs – 2007	0.13	0.16	23% / 30%	15% / 18%
Ammonia	Insufficient data				
Nitrite	Insufficient data				
Nitrite + nitrate	Insufficient data				

¹ Stage height was measured two to four times on 11 lakes in 2006.

² Secchi depth was measured two to four times on 10 lakes in 2007; an additional lake was excluded because the Secchi depth could not be measured during all attempts.

³ Specific conductivity was measured two to five times on 11 lakes in 2007; each measurement was the average of the lake profile.

⁴ pH was measured in lake profiles two or three times in 2006. SD/Mean was calculated on the hydrogen ion concentration, not the logarithmic pH scale.

⁵ E refers to epilimnion measurements, and H refers to hypolimnion measurements, for 10 lakes in 2007 with two to four profiles. N refers to unlayered lake measurements, for 3 lakes in 2007 with two to three profiles (two of these lakes had layering for part of the year).

⁶ For chlorophyll a and all water chemistry parameters, results for the core lakes were used. For several metrics, some or all measurements were below the laboratory detection limit, so these samples were excluded.

GLKN Acknowledgements

Field Sampling Crews

>20 people 2006-2007

> Park Staff

Full support of natural resources, maintenance, law, interpretation. Boat logistical support – crucial

➤ GLKN Staff

NETN Acknowledgements

- > Field Sampling Crews
 - > Park staff & volunteers, NETN staff, UVM contractors 2006-2007
- >USGS
 - > Protocol development, training, tech support
 - > Analysis at National Water Quality Laboratory (Denver, CO)
- University of Vermont
 - > Monitoring NETN parks excepting Acadia
- University of Maine
 - > Analysis at Sawyer Environmental Chemistry Research Laboratory
- > NETN Staff
- >NPS-WRD